Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 921: 171226, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402969

RESUMO

The present study investigated the effects of land use/land cover (LU/LC) changes on atmospheric carbon dioxide (CO2) and methane (CH4) concentrations over the sub-urban region of India (Shadnagar) using continuous decadal CO2 and CH4in-situ data measured by the greenhouse gas analyser (GGA). Data was collected from 2013 to 2022 at a 1 Hz frequency. Analysis of the current study indicates that during pre-monsoon, the seasonal maximum of CO2 was 409.91 ± 9.26 ppm (µ ± 1σ), while the minimum during monsoon was about 401.64 ± 7.13 ppm. Post-monsoon has a high seasonal mean CH4 concentration of 2.08 ± 0.06 ppm, while monsoon has a low seasonal mean CH4 concentration of 1.88 ± 0.03 ppm. The primary classes, such as forest, crop, and built-up, were considered to estimate the effect of LU/LC changes on atmospheric CO2 and CH4 concentrations. Between 2005 and 2021, the study's results show that the built-up area at radii of 10 km, 20 km, and 50 km increased by 0.17 %, 0.10 %, and 0.4 %, respectively. While other LU/LC categories declined by 30 %, agriculture areas increased by 30 % on average. As a result, the CO2 and CH4 concentrations at the study site are increased by 6 % (26 ppm) and 6.5 % (140 ppb), respectively. The present study utilised the fire-based carbon emissions data from the Global Fire Emissions Database (GFED) to understand the impact on atmospheric CO2 and CH4. Analysis of the present work investigated the influence of transported airmass on CO2 and CH4 during the pre-monsoon and post-monsoon seasons using the HYSPLIT trajectories and found emissions were from the northwest, southeast, and northeast of the study site. Further, in-situ CO2 and CH4 records are compared against the MIROC4-ACTM simulation, and strong agreement was found with bias of 1.80 ppm and 0.98 ppb for CO2 and CH4, respectively.

2.
Dalton Trans ; 50(5): 1824-1837, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33465216

RESUMO

Here we report the effect of surface hydroxylation of BiFeO3 fillers on the dielectric, ferroelectric, energy storage and mechanical energy harvesting performance of poly(vinylidene fluoride). Surface hydroxylation helped to improve the interfacial interaction between the filler and PVDF matrix by introducing a strong hydrogen bonding between the -OH group of the hydroxylated BiFeO3 filler surface and the -CF2 dipole of PVDF in place of electrostatic interfacial interaction between non-hydroxylated BiFeO3 and the -CH2 dipole of PVDF. The amount of polar phase increased to around 91% for a 7 wt% hydroxylated BiFeO3 loaded PVDF film (7BFOH) by this new type of interfacial interaction. The dielectric, ferroelectric, energy storage and mechanical energy harvesting performance of the PVDF based composite films also improved by the above said technique. Upon repeated human finger tapping, the 7BFOH film delivered ∼18 V output peak to peak open circuit ac voltage (VOC). After rectification, the VOC of the 7BFOH film was able to charge a 10 µF capacitor up to ∼3 V which was able to light up some LEDs (connected in parallel) together instantaneously, which proved the real life applicability of the composite films in low power consuming self-powered electronic devices.

3.
Nanoscale ; 12(40): 20908-20921, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33091096

RESUMO

Here, we report the effect of ZnO decoration on ZnSnO3 fillers on the dielectric property, energy storage behaviour and mechanical energy harvesting performance of PVDF matrixes. More enhanced dielectric constant and reduction in dielectric loss were achieved in PVDF-ZnO@ZnSnO3 (PVDF-ZNZS) films than in PVDF-ZnSnO3 (PVDF-ZS) films for the same concentration of filler loading. Similarly, PVDF-ZNZS films showed simultaneous enhancement in electrical energy storage density and storage efficiency compared to PVDF-ZS composites. As all the constituent materials (PVDF, ZnSnO3 and ZnO) were piezoelectric, the resulting composite film showed improved piezoelectric energy harvesting performance too. After rectification, the output ac voltage was used to charge a 10 µF capacitor up to ∼5 V dc which was further used to light up some LEDs. Furthermore, in order to exhibit improved sensitive output, a hybrid piezo-tribo nanogenerator was fabricated which was demonstrated as a motion sensor, a weight sensor and a human body movement sensor as part of a real life application.

4.
Soft Matter ; 16(36): 8492-8505, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32832966

RESUMO

Bi0.95Ba0.05Fe0.95Zr0.05O3 (BBFZO) nanoparticles were synthesized by a sol-gel technique to develop a filler material with lower leakage current and oxygen vacancies compared to the host BiFeO3. In this work, we report the enhanced dielectric, ferroelectric, energy storage and energy harvesting performance of BBFZO incorporated PVDF composites. 15 wt% BBFZO loaded PVDF (15BBFZO) exhibited improved polarity (F(EA) = 77.42%) compared to neat PVDF (F(EA) = 37.01%). At an applied field of ∼14 kV cm-1 (1 Hz), this film (15BBFZO) exhibited a maximum energy storage density of 151.18 µJ cm-3 (at 1 Hz). Upon repeated human finger tapping, an average open circuit peak to peak a.c. voltage (VOC) ∼ 20 V was obtained from 15BBFZO. A comprehensive study of frequency dependent D-E loops and an extensive study of the effect of electrical poling on the output performance of the developed composite films have been performed. An improvement of the dipolar polarization was established through a frequency dependent D-E loop study of unpoled and poled 15BBFZO and from other experiments. After poling the energy storage density and VOC of 15BBFZO were 154.66 µJ cm-3 (at 1 Hz) and ∼30 V, respectively. After rectification this output electrical signal was able to charge a 10 µF commercial capacitor up to ∼5.5 V. After poling, the energy storage efficiency (η) of 15BBFZO also improved from 52.49% to 67.85% (at 1 Hz). The frequency dependence of the storage efficiency for all the samples has also been extensively investigated here. At 1 kHz, η improved to 93.30% for poled 15BBFZO.

5.
Nanoscale ; 12(33): 17462-17469, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32804184

RESUMO

A novel strategy of using hydrostatic pressures to synthesize gold-carbon (Au-C) nanohybrid materials is explored. The stable face-centered-cubic (fcc) Au undergoes a structural phase transition to a mixture of primitive orthorhombic and cubic phases as the carbon phase acquires a highly ordered onion-like carbon (OLC) structure which encapsulates the Au nanoparticles, thereby exerting an additional pressure. Increasing the pressure results in a one dimensional (1-D) chain-like structure with the primitive cubic Au nanoparticles contained in an amorphous carbon matrix. The OLC structure allows the formation of quenchable Au nanoparticle phases with the primitive close packing and Au-C hybrids with new mesoscopic structures. Under pressure, we observe the formation of a hybrid material composed of a poorly conducting matrix made of amorphous carbon and conducting OLC-encapsulated Au nanoparticles. The electrical conductivity of this hybrid material under pressure reveals a percolation threshold. We present a new synthesis approach to explore the interplay between atomic and mesoscopic structures and the electrical conductivity of metal hybrid structures.

6.
ACS Omega ; 4(6): 10539-10547, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460152

RESUMO

Many aspects of nanostructured materials at high pressures are still unexplored. We present here, high-pressure structural behavior of two Zn2SnO4 nanomaterials with inverse spinel type, one a particle with size of ∼7 nm [zero dimensional (0-D)] and the other with a chain-like [one dimensional (1-D)] morphology. We performed in situ micro-Raman and synchrotron X-ray diffraction measurements and observed that the cation disordering of the 0-D nanoparticle is preserved up to ∼40 GPa, suppressing the reported martensitic phase transformation. On the other hand, an irreversible phase transition is observed from the 1-D nanomaterial into a new and dense high-pressure orthorhombic CaFe2O4-type structure at ∼40 GPa. The pressure-treated 0-D and 1-D nanomaterials have distinct diffuse reflectance and emission properties. In particular, a heterojunction between the inverse spinel and quenchable orthorhombic phases allows the use of 1-D Zn2SnO4 nanomaterials as efficient photocatalysts as shown by the degradation of the textile pollutant methylene blue.

7.
Phys Chem Chem Phys ; 21(11): 5974-5988, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30829357

RESUMO

In the present work, we report the enhanced dielectric, ferroelectric, energy storage and energy harvesting performance of a citrate-gel synthesized Bi1-xBaxFeO3 (x = 0, 0.05, 0.10) incorporated poly(vinylidene fluoride) (PVDF) matrix. Doping with aliovalent ions has been shown to improve the multiferroic properties of BiFeO3. Though Ba2+ doping has been expected to introduce more oxygen vacancies, here we found a decrease in oxygen vacancies with increasing Ba2+ up to 10% doping. This suppression of oxygen vacancies through Ba2+ doping in BiFeO3 helped in the formation of the polar PVDF phase in the composite through interfacial interaction. The polar phase fraction (F(EA)) increases to 82.4% for the 7 wt% Bi0.9Ba0.1FeO3 incorporated PVDF film from 38.2% for the neat PVDF. This film also showed the highest energy storage density of 5.4 mJ cm-3 at a 110 kV cm-1 applied field and the highest energy harvesting performance of ∼20 V open circuit output voltage after application of repeated human finger tapping and releasing motion, due to its enhanced piezoelectric property. Here, we also demonstrate the enhanced energy harvesting capability of the said PVDF-Bi0.9Ba0.1FeO3 composite by charging a 10 µF commercial capacitor up to ∼5 V in 270 s, which can comfortably light up about 50 LEDs instantaneously.

8.
RSC Adv ; 9(8): 4303-4313, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35520174

RESUMO

Control and design of native defects in semiconductors are extremely important for industrial applications. Here, we investigated the effect of external hydrostatic pressure on the redistribution of native defects and their impact on structural phase transitions and photoconductivity in ZnO. We investigated morphologically distinct rod- (ZnO-R) and flower-like (ZnO-F) ZnO microstructures where the latter contains several native defects namely, oxygen vacancies, zinc interstitials and oxygen interstitials. Synchrotron X-ray diffraction reveals pressure-induced irreversible phase transformation of ZnO-F with the emergence of a hexagonal metallic Zn phase due to enhanced diffusion of interstitial Zn during decompression. In contrast, ZnO-R undergoes a reversible structural phase transition displaying a large hysteresis during decompression. We evidenced that the pressure-induced strain and inhomogeneous distribution of defects play crucial roles at structural phase transition. Raman spectroscopy and emission studies further confirm that the recovered ZnO-R appears less defective than ZnO-F. It resulted in lower photocurrent gain and slower photoresponse during time-dependent transient photoresponse with the synergistic application of pressure and illumination (ultra-violet). While successive pressure treatments improved the photoconductivity in ZnO-R, ZnO-F failed to recover even its ambient photoresponse. Pressure-induced redistribution of native defects and the optoelectronic response in ZnO might provide new opportunities in promising semiconductors.

9.
Luminescence ; 32(1): 62-70, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27321808

RESUMO

Here, we report a simple, green and economic process for the synthesis of highly fluorescent carbon nanoparticles (CPs) through low-temperature carbonization of a fruit waste, Citrus sinensis peel. This approach allows the large-scale production of aqueous CPs dispersions without any additives and post-treatment processes. The as-prepared CPs were of small particle size, exhibited bright blue fluorescence under UV irradiation (λmax  = 365 nm) with excellent colloidal stability in water. The chemical composition, structure and morphology of the as-prepared CPs were analyzed using various spectroscopic techniques such as X-ray diffraction, transmission electron microscopy and raman spectroscopy. The formed CPs were turbostratic in nature, with a large number of functional groups on the surface. We explored the adsorption characteristics of the formed CPs for wastewater treatment. Because of the negative surface of the CPs, as evident from the zeta value, it is possible to use them for selective adsorption of the cationic dye methylene blue from a mixture of dyes. The equilibrium adsorption isotherm revealed that the Langmuir model better describes the adsorption process than the Freundlich model. As-prepared CPs rapidly adsorbed ~84% of the methylene blue within 1 min and can be regenerated and used repeatedly. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Carbono/química , Citrus sinensis/química , Fluorescência , Azul de Metileno/química , Nanopartículas/química , Poluentes Químicos da Água/química , Adsorção , Tamanho da Partícula , Propriedades de Superfície
10.
Inorg Chem ; 53(8): 3961-72, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24684654

RESUMO

We have carried out the effect of post annealing temperatures on the performance of solution-grown ZnO rods as photoanodes in dye-sensitized solar cells. Keeping our basic objective of exploring the effect of native defects on the performance of DSSC, we have synthesized ZnO rods having length in the range of 2-5 µm by a modified sonication-induced precipitation technique. We performed extensive characterization on the samples annealed at various temperatures and confirmed that annealing at 300 °C results in ZnO rods with minimum native defects that have been identified as doubly ionized oxygen vacancies. The electron paramagnetic resonance measurements on the samples, on the other hand, confirmed the presence of shallow donors in the low temperature annealed samples. We also carried out electrochemical impedance measurements to understand the transport properties at different interfaces in the solar cell assembly. We could conclude that solution-processed ZnO rods annealed at 300 °C are better suited for fabricating DSSC with improved efficiency (1.57%), current density (5.11 mA/cm(2)), and fill factor (45.29%). On the basis of our results, we were able to establish a close connection between the defects in the metal oxide electron transporting nano system and the DSSC performance.

11.
J Clin Diagn Res ; 7(6): 1244-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23905151

RESUMO

Pyogenic granuloma is thought to represent an exuberant tissue response to a local irritation or trauma. It is a reactional response to constant minor trauma and it might be related to hormonal changes. Clinically, these lesions usually present as single nodules or sessile papules with smooth or lobulated surfaces. These may be seen in any size, from a few millimetres to several centimetres. Pyogenic granuloma of the oral cavity is known to involve the gingiva more commonly (75% of all the cases). An extragingival occurrence of pyogenic granuloma is rare. This paper has described an extragingival pyogenic granuloma which occurred on the upper labial mucosa in a 30 years old female patient.

12.
J Hazard Mater ; 248-249: 238-45, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23385204

RESUMO

Carbon nanoparticles continuously generated from industries and vehicles due to incomplete combustion of fuels is one of the potent causes of air pollution. The exposure of this polluted air with carbon nanoparticles, introduced into the bloodstream of animals in the course of respiration, motivated us to study their interaction with plasma proteins, bovine serum albumin and human serum albumin. Carbon nanoparticles with very small size and high purity were synthesized by dehydration of d-glucose using concentrated sulphuric acid as dehydrating agent. These were characterized by transmission electron microscopy, atomic force microscopy, X-ray diffraction, Raman spectroscopy, FTIR spectroscopy and UV-visible spectroscopy. Carbon nanoparticles-protein interactions were studied by fluorescence spectroscopy, circular dichroism spectroscopy and isothermal titration calorimetry. The fluorescence quenching constants and thermodynamic parameters such as enthalpy change (ΔH°), entropy change (ΔS°) and free energy change (ΔG°) were calculated, which indicated a strong static quenching and primary electrostatic interaction between the carbon nanoparticles and blood proteins. Circular dichroism spectra provided the information about the secondary structure alteration of the proteins in presence of carbon nanoparticles. These findings have shed light towards an understanding of the interactions between carbon nanoparticles and serum proteins which may clarify the potential risks and undesirable health effects of carbon nanoparticles, as well as the related cellular trafficking and systemic translocation.


Assuntos
Carbono/química , Nanopartículas/química , Albumina Sérica/química , Animais , Calorimetria , Bovinos , Humanos , Conformação Proteica , Análise Espectral/métodos , Termodinâmica
13.
Inorg Chem ; 51(2): 844-50, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22220745

RESUMO

A sonochemical method was employed to prepare reactive nanoparticles of FeSbO(4) at 300 °C, which is the lowest calcination temperature reported so far for preparing FeSbO(4). A systematic evolution of the FeSbO(4) phase formation as a function of temperature was monitored by in situ synchrotron X-ray measurements. The 300 and 450 °C calcined powders exhibited specific surface areas of 116 and 75 m(2)/g, respectively. The X-ray photoelectron spectra analysis confirmed the presence of mainly Fe(3+) and Sb(5+) in the calcined powder. The response of the fabricated sensors (using both 300 and 450 °C calcined powders) toward 1000 ppm and 1, 2, 4, and 8% hydrogen, respectively, has been monitored at various operating temperatures. The sensors fabricated using 300 °C calcined powder exhibited a response of 76% toward 4% H(2) gas at an operating temperature of 300 °C, while those fabricated using 450 °C calcined powder exhibited a higher response of 91% with a quick recovery toward 4% H(2) gas at 300 °C. The results confirmed that a higher calcination temperature was preferred to achieve better sensitivity and selectivity toward hydrogen in comparison to other reducing gases such as butane and methane. The experimental results confirmed that the sonochemical process can be easily used to prepare FeSbO(4) nanoparticles for various catalytic applications as demonstrated. Here, we project FeSbO(4) as a new class of material exhibiting high sensitivity toward a wide range of hydrogen gas. Such sensors that could detect high concentrations of hydrogen may find application in nuclear reactors where there will be a leakage of hydrogen.

14.
Nanotechnology ; 22(27): 275506, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21613735

RESUMO

The gas sensitivity exhibited by nanoparticles of 1 wt% Pd catalysed antimony doped tin dioxide (ATO) prepared by a citrate-nitrate process is reported here. The reduction of particle size to <3 nm, a dimension smaller than double the thickness of the charge depletion layer, has resulted in an exceptionally high butane sensitivity and selectivity. The sensitivity and selectivity of ATO particles of different sizes unequivocally proved that reducing the size of particles to below twice the Debye length dimension produces materials with exceptionally high sensitivity and selectivity for sensor applications. The sensitivity of the samples towards 1000 ppm butane varied in the order 98%>55%>47%, for CNP>SP>CP samples having crystallite sizes of the order of 2.4 nm to 18 nm to 25 nm, respectively. The ATO nanoparticles exhibited not only a remarkable increase in gas sensitivity of around 98% towards 1000 ppm butane at 350 °C, but also a preferential selectivity to butane compared to other gases such as CO, CO2, SO2, CH4 and H2. In addition to the exceptionally high sensitivity and selectivity, the developed sensors also exhibited an improved response time and long term stability, which are of paramount importance for practical device development.

15.
Inorg Chem ; 50(3): 711-3, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21175209

RESUMO

A poorly conducting ionic material Ce(0.90)Ca(0.10)O(2-δ) was converted to a highly conducting composition by a codoping strategy with Sm(3+) and Gd(3+). A 50% replacement of Ca with either Sm or Gd has increased the conductivity at 550 °C of Ce(0.90)Ca(0.10)O(2-δ) from 0.0040 to 0.0169 S/cm for the Ce(0.90)Ca(0.05)Sm(0.05)O(2-δ) composition and to 0.0184 S/cm for the Ce(0.90)Ca(0.05)Gd(0.05)O(2-δ) composition. The enhancement in the oxide ion conductivity of these codoped samples has been related to the low ionic radii mismatch and the elastic strain. The extended X-ray absorption fine structure measurements on these systems confirmed that Gd, when coupled with Ca, introduced more disorder in the system, leading to lower activation energy and higher conductivity. In addition, a reduction in the Ce-O bond distance and coordination number has also been observed with codoping.

17.
J Phys Chem B ; 109(39): 18226-9, 2005 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16853344

RESUMO

Synchrotron X-ray diffraction measurements confirmed that a new polymorph of FeAlO3 could be synthesized at about 1800 K and 72 GPa. This phase can be indexed on an orthorhombic cell and transforms into the trigonal form on release of pressure. The c/a ratio of about 2.71 of the trigonal phase suggests corundum structure of FeAlO3 rather than LiNbO3 or ilmenite structure. This conclusion also suggests that the high-pressure orthorhombic phase could be the Rh2O3(II) structure rather than the GdFeO3-type perovskite structure.

18.
Inorg Chem ; 41(1): 11-8, 2002 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-11782138

RESUMO

(CH(3))(3)SnI exists as individual tetrahedral molecules in hexane but reacts with the silanol moieties present on the surface of porous glass and with the hydroxyl group of ethanol and hexanol to form five-coordinate adducts. With the exception of slight shifts to higher energy, formation of the adduct has little effect on the electronic spectrum of the complex, and the wavelength and O(2) dependencies of the quantum yield of (CH(3))(3)SnI disappearance indicate that the photochemistry of the complex initiates from the ligand-to-metal charge-transfer (LMCT) state populated on absorption in each medium. Nevertheless, 254 nm excitation in hexane leads to I(2) and ((CH(3))(3)Sn)(2), whereas excitation of the five-coordinate adduct on the glass surface leads to I(2), I(3)(-), ((CH(3))(3)Sn)(2), and (CH(3))(3)Sn-OSi[triple bond](OSi[triple bond]represents a surface siloxyl), while in ethanol, I(3)(-) is the only detectable product. Regardless of the medium, the ground state is polarized and population of the LMCT state creates a more uniform charge distribution from which homolytic cleavage of the (CH(3))(3)Sn-I bond is the dominant reaction pathway in each medium. In hexane, the (CH(3))(3)Sn(*) and I(*) radicals couple to form ((CH(3))(3)Sn)(2) and I(2), whereas adsorbed onto the glass, a fraction of the radical pairs thermalize via electron transfer to form I(3)(-) and a surface-bound (CH(3))(3)Sn-OSi[triple bond] species. In ethanol, excitation of the solvent adduct (CH(3))(3)Sn-OHC(2)H(5) leads to homolytic cleavage and I(2) formation, which reacts thermally with (CH(3))(3)Sn-OHC(2)H(5) to form an [(CH(3))(3)Sn(+), I(3)(-)] ion pair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...